Finite-memory denoising in impulsive noise using Gaussian mixture models
نویسندگان
چکیده
منابع مشابه
Finite-Memory Denoising in Impulsive Noise Using Gaussian Mixture Models
We propose an efficiently structured nonlinear finitememory filter for denoising (filtering) a Gaussian signal contaminated by additive impulsive colored noise. The noise is modeled as a zero-mean Gaussian mixture (ZMGM) process. We first derive the optimal estimator for the static case, in which a Gaussian random variable (RV) is contaminated by an impulsive ZMGM RV. We provide an analytical d...
متن کاملNoise Compensation for Speech Recognition Using Subspace Gaussian Mixture Models
In this paper, we adress the problem of additive noise which degrades substantially the performances of speech recognition system. We propose a cepstral denoising based on the Subspace Gaussian Mixture Models paradigm (SGMM). The acoustic space is modeled by using a UBM-GMM. Each phoneme is modeled by a GMM derived from the UBM. The concatenation of the means of a given GMM leads to a very high...
متن کاملNoise Compensation for Subspace Gaussian Mixture Models
Joint uncertainty decoding (JUD) is an effective model-based noise compensation technique for conventional Gaussian mixture model (GMM) based speech recognition systems. In this paper, we apply JUD to subspace Gaussian mixture model (SGMM) based acoustic models. The total number of Gaussians in the SGMM acoustic model is usually much larger than for conventional GMMs, which limits the applicati...
متن کاملImputation through finite Gaussian mixture models
Imputation is a widely used method for handling missing data. It consists in the replacement of missing values with plausible ones. Parametric and nonparametric techniques are generally adopted for modelling incomplete data. Both of them have advantages and drawbacks. Parametric techniques are parsimonious but depend on the model assumed, while nonparametric techniques are more flexible but req...
متن کاملWavelet-Based Bayesian Denoising Using Bernoulli-Gaussian Mixture Model
In general, wavelet coefficients are composed of a few large coefficients and a lot of small ones. Therefore, each wavelet coefficient is efficiently modeled as a random variable of a Bernoulli-Gaussian mixture distribution with unknown parameters. The Bernoulli-Gaussian mixture is composed of the multiplication of the Bernoulli random variable and the Gaussian mixture random variable. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing
سال: 2001
ISSN: 1057-7130
DOI: 10.1109/82.982367